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A dilute dispersion containing small, force-free drops of one fluid dispersed in a 
second, immiscible fluid in a linear flow field is considered for small Reynolds numbers 
and large PCclet numbers under isothermal conditions. The emphasis of our analysis 
is on the effects of pairwise drop interactions on their collision rate, as described by the 
collision efficiency, using a trajectory analysis. Simple shear flow and uniaxial 
extensional or compressional flow are considered. For both flows, the collision 
efficiency decreases with increasing drop viscosity due to the effects of hydrodynamic 
interactions. It also decreases as the ratio of the smaller drop radius to the larger radius 
decreases. For uniaxial flow, finite collision rates are predicted in the absence of 
interdroplet forces for all finite values of the drop size ratio and the ratio of the 
viscosities of the drop and suspending medium. In contrast, several kinds of relative 
trajectories exist for a pair of drops in simple shear flow, including open trajectories, 
collision trajectories, and closed and semi-closed trajectories, in the absence of 
interdroplet forces. When the ratio of small to large drop diameters is smaller than a 
critical value, which increases with increasing drop viscosity, all of the relative 
trajectories that start with the two drops far apart remain open (no collisions), unless 
in the presence of attractive forces. Attractive van der Waals forces are shown to 
increase the collision rates. 

1. Introduction 
Collisions and coalescence of small drops dispersed in another liquid or a gas play 

important roles in a wide variety of natural and industrial processes, such as raindrop 
growth, liquid-liquid extraction, and the processing of liquid-phase miscibility gap 
materials. Collision and coagulation of solid particles induced by Brownian motion 
and gravity sedimentation have been investigated intensively for small Reynolds 
numbers. For rigid spheres with simultaneous effects of hydrodynamic interactions and 
interparticle attractive and repulsive forces, Spielman (1970), Valioulis & List (1984), 
and Kim & Zukoski (1990) extended the classic work of Smoluchowski (1917) by 
solving the steady-state diffusion equation describing the relative Brownian motion 
between two coagulating particles. For gravity-induced coagulation of rigid spheres, 
theoretical models have been developed by Davis (1984) and Merik & Fogler (1984) to 
predict the rate of coagulation using trajectory analyses, and by Wen & Batchelor 
(1985) using an asymptotic method for solving the Fokker-Planck pair conservation 
equation. Recently, these analyses have been extended to predict the collision rate of 
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two interacting spherical fluid drops induced by Brownian motion, gravity sedi- 
mentation and thermocapillary migration (Zhang & Davis 199 1, 1992 ; Satrape 1992 ; 
Wang & Davis 1993; Zhang, Wang & Davis 1993). 

In the works cited above, the dispersions are assumed to be quiescent (no stirring or 
imposed flow), other than as a result of the motion of individual drops. Smoluchowski 
(1917) made the first attempt to estimate the rate of coagulation in a dilute dispersion 
of rigid spheres in a shear flow. In his classical model, the spheres are assumed to move 
independently, without any hydrodynamic interactions or interparticle attractive and 
repulsive forces other than a sticking force upon contact. Accounting for the effects of 
hydrodynamic interactions and interparticle attractive force, Curtis & Hocking (1 970) 
applied their calculations to experiments on coagulation in simple shear flow to 
estimate the Hamaker constant. Batchelor & Green (1972u, b) obtained the general 
form of hydrodynamic interaction between a pair of particles in a linear flow field. 
They also complemented the bispherical-coordinate solution of Lin, Lee & Sather 
(1 970) with near- and far-field asymptotic expressions for hydrodynamic functions. 
Van de Ven & Mason (1976) and Zeichner & Schowalter (1977) combined the general 
approach of Batchelor & Green (1972~) and DLVO (Derjaguin & Landau 1941; 
Venvay & Overbeek 1948) theory to predict the coagulation rate for monodispersed 
rigid spheres in the shear fields. Later, the relative motion and collisions of unequal- 
sized particles were analysed by Adler (1981). The effect of weak bulk convection on 
the Brownian collisions is discussed by van de Ven & Mason (1977), and the effect of 
weak Brownian diffusion on shear-induced coagulation of colloidal dispersions was 
considered by Feke & Schowalter (1983). In the current work, we predict collision rates 
for small, freely suspended spherical fluid drops which are subjected to prescribed bulk 
shear flows. 

It is well known that lubrication forces prevent rigid particles with smooth surfaces 
from coming into physical contact in the absence of an attractive force that increases 
as the separation distance decreases. In contrast, when drops approach each other in 
near contact, the mobility of their interfaces allows the fluid between them to be 
squeezed outward with much less resistance than for the case of rigid particles. As 
discussed by Davis, Schonberg & Rallison (1989), this allows for non-zero collision 
rates of non-deforming drops, even in the absence of attractive forces. However, there 
are only few studies of the coalescence of fluid drops in a shear flow field, presumably 
because of the more complex interactions which involve fluid flow both inside and 
outside the drops and which include the possibility that the drops will deform as they 
collide. Zinchenko (1983) calculated the hydrodynamic interactions between a pair of 
equal-sized, non-deforming drops in a linear flow field. Later, Zinchenko (1984) used 
this solution to analyse the rheological properties of dilute emulsions. To the best of 
our knowledge, the collision rate of two arbitrary-sized drops in a shear flow has not 
been studied before. 

The present work employs the complete solutions for hydrodynamic interactions of 
two spherical drops in a linear flow field to calculate the collision rate by extending the 
previous work for rigid particles. In $2, the effects of drop interactions on their relative 
motion are discussed. The hydrodynamic interactions are presented as two-sphere 
relative mobility functions, with the details of the calculation of relative mobility 
functions presented in Appendices A and B. In $3, theoretical models for shear-induced 
collision rates are developed. The analysis is limited to large Pkclet numbers so that 
Brownian motion can be neglected. In $4, a trajectory analysis is used to determine the 
collision rates in the two prototype flows, namely steady uniaxial extensional (pure 
stretching) flow and steady simple shear flow. The results of numerical computations 
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for collision efficiencies are presented and discussed. Concluding remarks are given in 
§5  

2. Interaction between spherical drops 
2.1. Expression for  the relative velocity o j  two drops 

A dilute dispersion containing spherical drops of viscosity p’ dispersed in an immiscible 
fluid of viscosity p is considered. Both fluids are Newtonian and isothermal, and it is 
assumed that there are no surfactants on the drop surface. For dilute dispersions, the 
probability of a third drop influencing the relative motion of two interacting drops is 
small, and so the analysis is restricted to binary interactions of drops of radii a, (large 
drop) and a,  (small drop). The drops are of such small sizes that they remain spherical 
(small capillary number), and that inertia may be neglected (small Reynolds number). 
The ambient flow field has velocity U(O)(x, t ) ,  which is assumed to be a linear function 
of position and can therefore be characterized instantaneously by a uniform rate-of- 
strain tensor, 

and a rigid-body rotation with constant angular velocity, 
n = 1v x U(O). 

Because of the linearity of the creeping flow equations, the velocity field can be 
decomposed into velocity caused by the motion of force-free drops and that caused by 
the interdroplet forces. Moreover, the relative velocity can be decomposed into motion 
along and normal to the line-of-centres of the two drops (Batchelor & Green 1972a): 

rr 
V,,(r) = O x r + € . r -  

-D:”:[IIB(s)+(I-~).I(~)].v(c#jlz), kT r2 (3) 

where r is the vector from the centre of drop 1 to the centre of drop 2, / is the unit 
second-order tensor, and s = 2r/(a,  +a,) is the dimensionless centre-to-centre distance. 
The relative diffusivity due to Brownian motion for two widely separated drops is 

kT@+ 1 ) ( 1  +h-l) Dg) = 
27cp(3,L + 2)  a,’ (4)  

where ,L =p ’ /p  is the viscosity ratio, h = a,/a, is the radius ratio, 
k = 1.381 x erg Kpl is the Boltzmann constant, and Tis the absolute temperature. 

is 
usually assumed to be the sum of the individual attractive and repulsive contributions 
by the DLVO theory (Derjaguin & Landau 1941; Verway & Overbeek 1948). It is 
assumed here that the drop interfaces are clean and do not carry any repulsive charges. 
Then, the interparticle force is attractive and results from London-van der Waals 
induced-dipole interactions. The van der Waals potential as a function of drop 
separation was first calculated by Hamaker (1 937) using a pairwise additivity theory. 
For unequal-sized spheres without retardation, the force potential as a function of the 
drop separation is 

The interdroplet force is given by -Vc#jlz. The total interdroplet potential, 

8h 8h 
(s2-4)(1 +h)”s2(l +h)’-4(1 -A)’ 
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FIGURE 1. Schematic of the coordinate system used for trajectory equations. 

where A is the composite Hamaker constant, which is typically of order 10-19-10-21 J 
(Russel, Saville & Schowalter 1989). 

The relative trajectory of a pair of drops is needed for determination of the flow- 
induced collision rate. The trajectories are described in the coordinate system as shown 
in figure 1. For simple shear flow having the ambient flow velocity components 
(yx,, 0, 0), carrying out the vector and tensor operations indicated by (3) yields the 
dimensionless trajectory equations 

- _  ds 29 d$l2 - (1 - d) s sin2 0 sin $ cos q5 ---, 
dr Q i z  ds 

- = (l-g)sinOcosOsin$cos$, (8) 
dB 
dr 

where 7 = ~t is the dimensionless time, $12 = Qlz/A is the dimensionless interdroplet 
potential scaled with the Hamaker constant, and Q,, is the dimensionless interparticle 
force which measures the relative importance of ambient flow to the van der Waals 
attraction : 

+f( 1 + y 
AD;,/kT ' 

(9) 

Note that Q,, is proportional to the third power of the drop radius. Thus, the 
contribution of the van der Waals attraction to the drop relative motion is small for 
large drops, except when the drops are very close to one another. 

For pure straining flows, namely uniaxial extensional flow with the velocity 
components (- yxl ,  - yx2,  27.4, and uniaxial compressional flow, which is the reverse 
of the extensional flow, carrying out the vector and tensor operations indicated by (3) 
yields the dimensionless trajectory equations 

- ds = &(l -d)s(3cos28- l)---, 9 dA2 
dr Q i z  ds 
d8 - 
-= + 3(1-B)sinBcosO, 
dr 

= 0, - d$ 
dr 



Collision rate of small drops in linear f low fields 165 

where the upper and lower signs correspond to uniaxial extensional flow and 
compressional flow, respectively. 

2.2. Mobility functions for the relative motion of two drops 

The relative mobility functions of drop motion along the line-of-centres (d and '3) and 
motion normal to the line-of-centres (g and 2) describe the effects of hydrodynamic 
interactions between two spherical drops. These functions depend on the size ratio of 
the two drops, A, the drop-to-medium viscosity ratio, ,k, and the dimensionless distance 
between the drops, s = 2r/(a, + o,), and they are unchanged when h is replaced with 
h-l. Complete analytical and numerical results for the relative mobility '3 for arbitrary 
separation have been presented previously by Zhang & Davis (1991). For hydro- 
dynamic interactions of two widely separated drops in a linear flow field, the relative 
mobility functions d and 99 can be obtained using a method of reflections similar to 
that employed by Batchelor & Green (19724 for solid particles, yielding 

(2+5,L)(1+h3) 1 ,k(2+3,L)(1+h5)+,k(2+5,L)h2(1+h) 1 --48 
(1 +,k)(2+3,k)(l 

d ( s )  = 4 
(1 +$)(i + 4 3  s3 

and ,k(2+3,L)(1+h5)+,L(2+5,k)h2(1+h) 1 B(s) = 32 
- + 0 ($) . (1 +p)(2+3,k)(l s5 

In the case of equal-sized drops, these relations agree with the far-field asymptotics of 
Zinchenko (1983). According to (14), for the bubble case (,k = 0), the leading term of 
the function 9 vanishes. Interestingly, it can be proved that, when 11; = 0, the function 
B is identically zero for all separations. 

The far-field expressions (13) and (14) are valid only when the separation between 
the two drops is large compared to their radii a, and a,. Less restrictive, analytical 
expressions for d and W, valid for separations large compared to the smaller radius 
a,, may be obtained by image techniques (Fuentes, Kim & Jeffrey 1988, 1989). For our 
coalescence problem, the range r - a, - a, < a, is of primary importance, and so the 
more comprehensive, exact bispherical-coordinate solutions for two arbitrary-sized 
drops in a linear flow field are used in the present work. When the dimensionless gap 
separation, 5 = s - 2, between two drops is small, the convergence of series solutions 
becomes poor, and so the asymptotic results of Zinchenko (1982) and Davis et al. 
(1989) are used to calculate the near-field interaction (see Appendices A and B for 
details of the hydrodynamic functions). 

Typical results for the relative mobility functions along the line-of-centres, d, and 
normal to the line-of-centres, 9, as functions of the dimensionless distance between 
two drop surfaces, 5, are plotted in figures 2 and 3 for drops with size ratio h = 0.2,0.5, 
and 1.0, and various viscosity ratios. In these figures, the far-field asymptotic 
expansions and the near-field approximate expansions are represented by long-dashed 
lines and short-dashed lines, respectively, and the corresponding results from the exact 
bispherical-coordinates solutions are shown as solid lines for comparison. The far-field 
expansions for d and B are accurate to within a few percent for separations as small 
as one-half of the average drop radius. In fact, the far-field expansions for &!l may be 
used for all separations when ,L d 0.1. The near-field expansions for d, and for B with 
low 11;, are accurate to within a few percent for dimensionless separations less than 
1 x lop2. For drops with high viscosity ratios, the near-field asymptotics for 9 are 
accurate only for values of 5 less than about 3 x lop4. The mobility functions increase 
with increasing viscosity ratio, indicating stronger hydrodynamic interactions. For 
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FIGURE 2. The relative mobility function d along the line-of-centres as a function of the 
dimensionless distance between two drop surfaces with different viscosity ratios II; for size ratios (a) 
h = 0.2, (b) h = 0.5, and (c) h = 1.0. The solid lines are from the bispherical-coordinate solution; the 
long and short dashed lines are the far-field and near-field asymptotic expressions, respectively. The 
solid circles for h = 1 are the rigid-sphere results of Batchelor & Green (1972~) .  
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FIGURE 3. As figure 2 but for the relative mobility function .$? normal to the line-of-centres. 
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FIGURE The relative mobility functions (a) along to the line-of-centres, d, and ( ) norm;- to the 
line-of-centres, B, as functions of the dimensionless distance between two drop surfaces for a viscosity 
ratio /i = 5.0, with different size ratios, h = 1.0, 0.5, 0.3, 0.2, and 0.1, respectively, from left to right. 

large viscosity ratios (j 2 loo), the present results are in close agreement with the 
previous results by Batchelor & Green (1972 a) for rigid spheres, except for the function 
L8 at very small separations. 

Figure 4 shows the influence of the size ratio on the mobility functions. It is noted 
that the mobility functions d and 93 increase with drop size ratio decreasing. This is 
because a small drop tends to flow along the streamlines surrounding a large drop 
when the size ratio is small, therefore resulting in a highly disturbed motion of the small 
drop and thus strong hydrodynamic interactions and large mobility functions d and 
L8. 
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3. Expressions for the drop collision rate 
The rate at which the drops of radius a, collide with the drops of radius a, per unit 

volume is equal to the flux of pairs into the contact surface r = a, + a, and is expressed 
in terms of the pair-distributed function p12(r)  and the drop relative velocity qz, as 
given by Davis (1984), 

J,, = - n l n ,  1 P,zV,,-ndA, (15) 
r=ul+u2 

where n = r / r  is the outward unit normal to the spherical contact surface represented 
by r = a,+a,, and n1 and n2 are the number of drops at the given time in the size 
categories characterized by radius a, and radius a,, respectively, per unit volume of the 
dispersion. 

For a dilute dispersion, the pair distribution is governed by the quasi-steady mass 
conservation equation for regions of space outside the contact surface, 

The upstream boundary condition is plz+ 1 as r - t  co. 
For supramicron drops having high PCclet numbers, the relative motion of two 

drops of different size is deterministic, and the collision rate may be found using a 
trajectory analysis. Using (1 6) and the divergence theorem, the integral in (1 5) can be 
taken over the surface that encloses the volume occupied by all trajectories that 
originate at r = 00 and terminate with the drops coming into contact. The collision rate 
then must equal the flux at r = 00 though a cross-section A,, to be referred as the 
upstream interception area. As r + 00, plz + 1, and 4, + Ug)  = 0 x r + E -  r,  and so the 
collision efficiency can be determined through an upstream interception area A ,  by 

When hydrodynamic and interdroplet interactions are neglected up to the instant of 
contact, as in Smoluchowski’s model, the particle trajectories coincide with the 
undisturbed streamlines of the bulk motion. These streamlines are straight lines in 
simple shear flow. In this case, the boundary of A,  is then a circle of radius a, +a,. The 
collision rate is (Smoluckowski 1917) 

For uniaxial extensional or compressional flow without hydrodynamic and interdroplet 
interactions, the collision rate is (Zeichner & Schowalter 1977): 

The collision efficiency is defined as the ratio of the collision rate in the presence of 
interactions to that in their absence: 

El, = J , 2 / J g ) .  

The upstream interception area, which defines the area within which two widely 
separated drops will eventually collide and coalesce, may be determined by a trajectory 
analysis which includes hydrodynamic and interdroplet interactions. The details of the 
trajectory analysis, both with without van der Waals attractions, are discussed in the 
following section. 
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FIGURE 5. Pattern of the relative trajectories in the (z2,x3) half-plane for drops in a uniaxial 
extensional flow field. The three-dimensional aspect of these trajectories is obtained by rotating the 
depicted pattern about the x3 axis through 360". 

4. Results and discussion 
4.1. Drop collisions in uniaxial extensional $ow without interdroplet forces 

In uniaxial extensional flow, the pattern of relative trajectories in the (x2, x,)-half-plane 
is shown in figure 5. The relative trajectories are symmetrical about the x, axis and the 
plane x, = 0. In the absence of van der Waals forces, the relative trajectories are 
determined by dividing (10) by (11) and integrating to yield 

(21) s3 sin2 8 cos 8 = Cq3(s), 

where C is the constant specifying a particular trajectory, and the function q(s) is given 
by 

Following the work of Zinchenko (1984), it is seen that, when 

ICI > Ccr = 16/(3.\/3q3(2))7 

the corresponding trajectories arrive from infinity and return to infinity without 
reaching the contact sphere s = 2. There are also trajectories arriving from infinity at 
the contact sphere s = 2 when ICI < Ccr. The critical trajectories with C = f C,, touch 
the sphere s = 2 at 8 = 8, or at n: - 8,, where 8, = arctan d 2 .  The direction of the 
trajectories reverses for the case of uniaxial compressional flow. 

The pair distribution function in the shaded region in figure 5 equals zero at steady 
state. Following the analysis by Batchelor & Green (1972b) and Zinchenko (1984), the 
pair distribution function in the remaining part of r-space can be found by the Liouville 
equation : 

V.(Pl ,  K2) = q12 KZ~V(PlZ/~12)  = 0, (23) 

where qI2  = (1 - d ) - l r p ( s ) .  (24) 

Thus we find that plz(r)  E q12(r) everywhere with s > 2, except in the shaded region. 
Substituting (24) for plz(r)  into the definition (15) of the collision rate, we have 
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FIGURE 6. The collision efficiency for drops in uniaxial flow as a function of the size ratio h for 
different viscosity ratios ji without interdroplet forces. 
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FIGURE 7. The collision efficiency for drops in a uniaxial flow field as a function of the viscosity 

ratio for various drop size ratios without interdroplet forces. 

Using (20), the collision efficiency for uniaxial extensional flow is 

The calculated collision efficiencies for uniaxial extensional flow as a function of size 
ratio for different viscosity ratios are shown in figure 6. The collision efficiency El, 
decreases as the size ratio h increases, because a smaller drop tends to follow the 
streamlines of the flow around a larger one. In the limit ,k + co, corresponding to that 
of rigid spheres, El, + 0. Figure 7 shows the results for collision efficiency as a function 
of the viscosity ratio, ,i. As expected, the collision efficiency decreases as ,k increases 
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FIGURE 8 (a-c). For caption see facing page. 
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because this corresponds to decreasing the interface mobility and internal flow, which 
leads to a higher hydrodynamic resistance to close approach. The collision efficiency 
for the inverse flow, namely uniaxial compressional flow, is exactly the same, owing to 
the reversibility of the linear creeping flow equations. 

4.2. Drop collisions in uniaxial extensional JEow with interdroplet forces 
In the presence of van der Waals forces, the trajectory equations must be solved 
numerically. Since there is no velocity components in the $-direction, as shown in (12), 
the trajectory equations (10)-(12) are reduced into single equation for ds/dO. The 
limiting trajectory, which separates collision and non-collision trajectories, is found by 
selecting an initial condition very near to O = 0, s = 2, and integrating backwards 
(Feke & Schowalter 1983) using a fourth-order Runge-Kutta-Merson method. In 
most cases, the integrations were stopped at s = 10, and the far-field undisturbed 
stream functions were then used to compute the upstream interception area. 

Typical results for the collision efficiency as a function of Q,, are shown in figure 8 
for different viscosity and size ratios. As expected, attractive van der Waals forces 
increase the collision rate. In fact, the collision efficiency becomes larger than unity for 
very large van der Waals forces, which corresponds to small Ql,. In particular, the 
collision efficiency for f i  9 1 is independent of f i  for large attractive forces, but not for 
small attractive force. The solid circles in figure 8(c) represent the calculations by 
Zeichner & Schowalter (1977) for solid spheres. Our results for f i  = cc agree well with 
their results, except for low values of Q12. The discrepancy is due to some minor errors 
in their calculations (Feke 198 1). 

4.3. Drop collisions in simple shear f low without interdroplet forces 
When interdroplet forces are neglected, the last term on the right-hand side of (6) is 
zero. Equations (6)-(8), which describe the relative trajectories for a pair of drops in 
simple shear flow, then yield the following integrals of the relative trajectories 
(Batchelor & Green 1972a) : 

x3 = ,53Pj(S>> (27) 

(28) 

where xi = 2x,/a,( 1 + A) for i = 1,2,3 are the dimensionless coordinates, and t2 and 5, 
are the constants specifying a particular trajectory. The expression for Y(s)  is 

= Pj2(s) " 2  + ~(41, 

Following the work of Zinchenko (1984), we define the following regions in r-space 
(s > 2): 

D,: xi < $(s) Y(s), (30) 

where D, is the domain consisting of finite trajectories, and D, is the region occupied 
by the trajectories touching the contact surface r = a,  +a,. There are several types of 

FIGURE 8. The collision efficiency as a function of the interdroplet force parameter Q,, for drops in 
a uniaxial extensional flow field with different viscosity ratio ,i and size ratios (a) h = 0.2, (b) h = 0.5, 
and (c) h = 1 .O. The solid circles represent the rigid sphere results of Zeichner & Schowalter (1977). 
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FIGURE 9. A typical pattern of relative trajectories in the x, = 0 plane. 

possible relative trajectories : (i) open trajectories, which do not belong to region 
D, u D,, are trajectories that arrive from infinity and depart to infinity without reaching 
the contact sphere s = 2; (ii) collision trajectories, forming the region D,\D,, are the 
trajectories arriving from infinity at the sphere s = 2, or emerging from the sphere 
s = 2 and going to infinity; (iii) semi-closed trajectories, which form the region D, n Of, 
are trajectories coming from sphere s = 2 and returning to it; and (iv) closed 
trajectories, which form the region D,\D,. 

= 0 when I;  = 0;  hence, Y = 0, and so the region D,, as 
defined by (30), vanishes in this case. This may be interpreted as inviscid drops or 
bubbles not providing enough resistance to relative motion to support finite or closed 
trajectories. When ,k > 0, the geometry of the regions D, and D, depends on whether 
the inequality ( ~ ~ ( 2 )  Y(2) < 4 holds. Zinchenko’s (1984) calculations show that, in the 
case of equal-sized drops, there exists some very large viscosity ratio, I;, 9 20, for which 
( ~ ~ ( 2 )  Y(2) = 4. In this study, we found that, owing to the dependence of hydrodynamic 
interactions on the drop size ratio and on the drop-to-medium viscosity ratio, there 
exists a critical size ratio, A,@), for each viscosity ratio, so that ( ~ ~ ( 2 )  Y(2) > 4 only for 
h < A,. The critical size ratio is discussed later in more detail. When I; > I;,, the critical 
size ratio becomes unity, and so the condition ( ~ ~ ( 2 )  Y(2) > 4 holds for all size ratios. 

Figure 9 shows a typical pattern of relative trajectories in the X, = 0 plane for 
,k < ,k, and h > A,. The boundary of the region D, is formed by rotating the trajectories 
A ,  A,, A ,  A,, A ,  A,, and A ,  A ,  (which all correspond to E2 = 0) about the x2 axis. It can 
be shown that, as s+co, these trajectories approach the T, axis as O(s-$). When 
,k = 0, A ,  A,, A ,  A,, A ,  A,, and A ,  A ,  tend to the x, axis; thus, region D, vanishes for 
this case. The pair distribution function in the shaded region in figure 9 equals zero at 
steady state. The boundary of the region D, is formed by rotating the trajectories 
A,A, ,A, ,  and A,, A, ,A, ,  (with c, = (4/rp2(2))- Y(2)) about the X, axis and has a 
circular cross-section area of radius [(4/cp2(2)) - Y(2)$ as s --f co. This is the upstream 
interception area needed to calculate the collision efficiency in the absence of van der 
Waals forces, and so (~(2) and Y(2), which are functions of drop size ratio and viscosity 
ratio, must be calculated. 

When ,k > ,kc, or A < A,, the outer boundary of D, consists of two separated surfaces 
of revolution 5, = 0 not reaching the sphere s = 2, and the region D, c D, consists of 
semi-closed trajectories. So, in this case, all of the relative trajectories that start with 

As mentioned before, 
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FIGURE 10. The collision efficiency for drops in simple shear flow as a function of the size ratio h 
for different viscosity ratios ,i without interdroplet forces. 

the two drops far apart remain open (no collisions), unless in the presence of other 
driving forces such as attractive van der Waals forces. 

It is seen that the relative trajectories of a pair of fluid drops are different from that 
of rigid spheres. For two rigid spheres, the only possible trajectories are open 
trajectories and closed trajectories. The minimum distance between the surface 5, = 0 
and the contact surface s = 2 varies from 4.2 x 10-5a, for h = 1 (Arp & Mason 1977, 
and Zinchenko 1984) to 0 . 1 6 ~ ~  for h = 0 (Cox, Zia & Mason 1968). So, unlike the drop 
case, the collision rate is always zero between two rigid spheres, unless in the presence 
of van der Waals attraction. The integrals in (22) and (29) with s = 2 were computed 
using exact bispherical coordinate solutions and near-field asymptotic expressions as 
described in Appendices A and B. Note that, for high viscosity ratio ,ii, these integrals 
are difficult to calculate owing to a significant contribution from the near-field region. 

The calculated collision efficiencies between drops of different sizes in a simple shear 
flow with different values of ,ii are shown in figure 10. As expected, the collision 
efficiency decreases with increasing drop viscosity. It is also seen that the collision 
efficiency is zero when h is smaller than some critical size ratio for each ,ii. When h is 
larger than that value, the collision efficiency increases with increasing size ratio. Figure 
1 1 shows the critical value of the size ratio as a function of the viscosity ratio ; this curve 
demarcates the region for a dispersion to be unstable (collisions possible) and to be 
stable (collisions not possible) under the action of simple shear flow only. When the 
viscosity ratio is high enough, the collision efficiency will be zero for all size ratios, and 
the dispersion is then stable. This prediction is particularly important for controlling 
the properties of dispersions for practical applications. 

Figure 12 shows the results for the collision efficiency for drops in simple shear flow 
as a function of ,ii for h = 0.1, 0.2, 0.3, 0.5, 0.7, and 1 .O. As expected, El,  decreases as 
,ii increases because this corresponds to increasing hydrodynamic interactions. For size 
ratios below unity, the collision rate reaches zero at a finite ,ii, corresponding to the 
demarcation curve of figure 1 1. This is in contrast to the uniaxial flow case (see figure 
7) in which non-zero collision rates are predicted for all finite h and ji .  
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FIGURE 12. The collision efficiency for drops in a simple shear flow field as a function of the 
viscosity ratio ,i for various drop size ratios h without interdroplet forces. 

4.4. Drop collisions in simple shear $ow with interdroplet forces 
With the presence of interparticle forces, the upstream interception area is of irregular 
shape; thus, the collision efficiencies are more difficult to calculate than when van der 
Waals forces are absent. In the numerical routine, the three trajectory equations for 
drldt, d$/dt, and dO/dt, which describe the time rate of change of the relative position 
of the drops, are reduced to two equations, ds/d$ and dO/d$, by eliminating time as 
the independent variable for drops in simple shear flow. The trajectory equations were 
integrated numerically using a fourth-order Runge-Kutta-Merson method. 

Without interdroplet forces, all collisions occur in the front hemisphere when two 
drops start from far apart. There may also exist some closed trajectories of drops 
orbiting around each other under simple shear flow, as discussed before. When 
attractive van der Waals forces are present, however, drop collisions may occur in the 
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FIGURE 13. Trajectories in simple shear flow in the (x,,~,)-plane for a viscosity ratio of ,i = 10 and 
a size ratio of A = 0.5; the curves represent values of the interdroplet force parameter of Q,, = 1.0, 
10, lo3, and lo5, respectively, from top to bottom. 
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FIGURE 14. The upstream interception area as a function of the interdroplet force parameter Q,, 
for drops in simple shear flow field with viscosity ratio ,ii = 10, and size ratio A = 1.0. 

rear hemisphere. More interestingly, the drops may undertake multiple circulations 
around each other before eventually colliding due to the van der Waals attraction. In 
our trajectory analysis, we include all collision possibilities by employing the backward 
integration method discussed below. The purpose of this backward integration is to 
find the limiting trajectory that separates the collision and non-collision trajectories. 

It is well known that van der Waals forces for supramicron drops are only important 
when the drops are very close to each other (Zhang & Davis 1991). When drops are far 
apart, the hydrodynamic interactions predominate, and the van der Waals forces can 
be neglected. Based on this, the far downstream part of the set of limiting trajectories 
with large s should coincide with the boundary of Df as defined before. A trajectory 
with its far downstream part outside D, will depart to infinity. On the other hand, if 
the far downstream part of a trajectory is inside D,, this trajectory will eventually come 
back to collide with the contact surface. The remaining part of the limiting trajectories 
can be found by integrating the far downstream portion of the trajectories backward 
starting from the boundary of D,. This approach was first used by Adler (1981) for the 
calculation of collision efficiencies for rigid spheres. 
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FIGURE lS(u-c). For caption see facing page. 
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In order to locate the boundary of Df far away from the origin, the far-field 
expressions for d and a are substituted into (27) and (28) to obtain the limiting 
trajectories far downstream from contact : 

4(2+5,L)(1+h3) 1 

32,L(2+3,L)(1+h5)+,L(2+5,L)h2(1+h) 1 
(1 +p)(2+3,L)(1 -1 s3 (33) 

Figure 13 illustrates this backward integration method for calculating the limiting 
trajectories in the (x,, Q-plane with 6' = in for ,L = 10, h = 0.5, and different Q,,. The 
limiting trajectories are found by backward integration starting from point P 
calculated by (32) and (33) with s = 10 and 5, = 0. This backward integration is 
stopped when the limiting trajectories reach s = 10 upstream, and then (32) and (33) 
are used again to determine the limiting trajectories to upstream infinity. As expected, 
the upstream offset in the X, direction, as shown in figure 13, increases with increasing 
van der Waals forces, or correspondingly decreasing Ql,. 

Starting from s = 10 and different initial values of 0 according to (32) and (33) with 
5, = 0, the set of limiting trajectories are obtained that defines the upstream 
interception area, as shown in figure 14. As expected, the cross-section area is a 
decreasing function of Q,,. Notice that the curves bounding the cross-section area tend 
to infinity when X, -+ 0. The physical reason is that, when js, = 0, there is no relative 
motion for a pair of drops due to bulk shear flow. Thus, van der Waals forces will pull 
the drops together even if they start far apart. 

The collision efficiency as a function of Q,, for different viscosity and size ratios is 
shown in figure 15. It is seen that the collision efficiency increases with increasing van 
der Waals attractions (decreasing Q,,). Of particular interest are the cases of I; = 10 
and 100 for h = 0.2, for which collisions are impossible in the absence of van der Waals 
attractions but for which small but non-zero collision efficiencies are obtained with 
sufficiently strong van der Waals attractions. The solid circles in figure 15 (c) represent 
the results of Zeichner & Schowalter (1977) for equal-sized hard spheres; these agree 
well with the present calculations for ,L = 00. 

It should be noted that the backward integration method employed is not possible 
for the bubble case of ,L = 0. In this case, 3? = 0, and the region D, vanishes. In this 
case, the limiting trajectories are determined by backward integration starting from an 
initial condition very close to q5 = 0 and s = 2, and by varying the initial condition on 
6' from 0 to in. 

5. Conclusions 
This work provides quantitative predictions of drop collision rates in simple shear 

and uniaxial extensional flows. In this study attention is restricted to dilute dispersions 
of freely suspended drops, as is the case when the drops are neutrally buoyant, or when 
the dispersion is processed in a reduced-gravity environment. The drops are considered 
to have clean interfaces which are free of surfactants and charges. In this study, the 

FIGURE 15. The collision efficiency as a function of the interdroplet force parameter Q,, for drops in 
a simple shear flow field with different viscosity ratios ,i with size ratios (a) h = 0.2, (b) h = 0.5, and 
(c) h = 1.0. The solid circles represent the rigid-sphere results of Zeichner & Schowalter (1977). 
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temperature gradients are assumed small, so that thermocapillary effects (Young, 
Goldstein & Block 1959; Subramanian 1992) are negligible. It is assumed that the 
drops are sufficiently small that inertia is negligible and that the drops remain spherical. 
The former requires that the Reynolds number, Re = pya?/p, is small compared to 
unity. For typical conditions of p = 0.01 g cm-l s-lm, p = 1 g ~ m - ~ ,  and y = 1 s-l 
(Adler 1981 ; Cox et al. 1968), this restriction is met for a, < 300 pm. Yiantsios & 
Davis (1991) have shown that the modified capillary number, which is defined as 
Ca = pya;/rh,, must be small compared with unity in order for the deformation to be 
small relative to the separation distance, where cr is the interfacial tension and h, is the 
distance separating the drop interfaces at the point of nearest contact. For the above 
system with r = 10 dyne cm-l, this condition is also met for a, < 300 pm, provided 
that h, > 0.0003a1. Since van der Waals forces are likely to dominate at such small 
separations (Zhang & Davis 1991), we conclude that the near-contact deformation is 
not likely to affect the collision rate under these conditions. It is also assumed in the 
analysis that Brownian motion is negligible. This requires that the Peclet number, 
Pe = ya?/D:O,', is large compared with unity. For the above system at room 
temperature, this requires that a > 1 pm. 

Using a trajectory analysis to follow the relative motion of a pair of drops, 
theoretical models to determine the collision efficiencies, both with and without 
interdroplet forces, have been developed. Complete hydrodynamic interaction between 
two spheres is included in the analysis. It is shown that finite collision rates between 
non-deforming fluid drops in uniaxial extensional and in simple shear flows are 
possible in the absence of attractive forces. Collision rates are shown to decrease as the 
drop size ratio decreases. For drops in simple shear flow, however, it is found that no 
collision trajectory exists when the size ratio of two interacting drops is small. This 
implies that the two drops will not collide with each other if they start far apart, unless 
in the presence of other driving forces which pull them together. Collision rates are also 
shown to increase as the viscosity ratio decreases due to the decreasing effects of 
hydrodynamic interactions on drop relative motion. 

This research was supported by NASA Grant NAG3-1277, NSF Grant CTS- 
8914236, and a Cooperation in Applied Science and Technology travel grant from the 
National Research Council. 

Appendix A. Calculation of axisymmetric mobility functions 
The method employed for calculating the mobility functions 9 and d for 

axisymmetric motion of two drops along their line-of-centres is a generalization of the 
bispherical coordinate solution by Haber, Hetsroni & Solan (1973) and Rushton & 
Davies (1973) for the motion of two drops along the line-of-centres in a quiescent 
liquid. The analysis includes an additional axisymmetric pure straining flow far from 
the particles and has a simpler formalism. 

Let p, 8, z be a system of cylindrical coordinates associated with Cartesian 
coordinates x, y ,  z (x + iy = p eis, see figure 16). The bispherical coordinates 6 , ~  are 
introduced as follows : 

c sinh q c sin 
Z =  , p = cost. 

coshq-,u' = coshq-p 

The spheres 1 and 2 of radii a, and a2, respectively, become coordinate surfaces 
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FIGURE 16. Sketch of the coordinate system for two drops. 

7 = yi = const (i = 1,2) if the parameters 7, > 0, T~ < 0, and c > 0 are determined 
from the relations 

(A 2) 

(A 3) 
a pure straining flow 

with E being an arbitrary constant. Using the general solution by Stimson & Jeffrey 
(1926) for the Stokes' axisymmetrical problem in bispherical coordinates, the stream 
function $ inside the drops can be written as 

(A+ 1)[2(A+ 1)[+4+(A+ 1)'t2] 
2( t+2)(1+4 

COShT, = 

sinhy, = -sinh~,/A, c = a, sinhr,. 

Suppose the drops have the velocities V,, V, along the z-axis and are submerged in 

v,  = (Ex, Ey, - 2Ez), 

where P,&) is the Legendre polynomial of degree n and +,(7) is a linear combination 
of the functions exp [ & (n  - $) 71, exp [ f (n + g) 73. The regularity of the flows inside the 
drops implies 

(A 5 )  
$%r) = 4 exp [-  ( n  -3 71 + B, exp [-  (n +:I 71,\ 

J = C, ~ X P  [(n - 71 + D ,  ~ X P  [(n + 71, 
with A,, B,, C,, and D, being unknown constants. Here and henceforth the 
superscripts 1 and 2 mark the values related to the flows inside the spheres 1 and 2, 
respectively. Employing (A 4) outside the spheres (region e), with +,(7) being a 
combination of exp [ f ( n  -:) 71 and exp [ f (n +:) 71, would yield a flow that vanishes at 
infinity (Stimson & Jeffrey 1926), and so the unperturbed stream function $, = Ep2z 
should be added to this result. To obtain the bispherical-coordinate representation for 
$,, we use the identity (see Stimson & Jeffrey 1926) 

00 

$p2 = - c2 2/2(cosh 7 -p)-i C n(n + 1) R,(7) en&), (A 6) 
n=l 
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where 

Differentiating (A 6) with respect to 7 yields 

where $~(Y,I) = -2cEsinhqexp[-(n++) 1711. (A 9) 

Thus, (A 4) can be also used for the stream function p outside the spheres with 

$:(TI = en ex^ [(n-3(7-71)1 +F,~xP [(n-3(72-~)1 
+ Gn ~ X P  [(n + $1 (7 - 7JI + Hn ~ X P  [(n + 3 ( 7 2  - 711 + $Z(V), (A 10) 

and En, F,, G,, and H ,  being unknown coefficients. 
Using (A 6), the boundary conditions 

p=e=-+Kp2 for 7 = y i ,  i =  1,2 (A 11) 

Vn(7i) = K ' n (V i ) ,  i = 132 (A 12) 

and Pi(7i) = KRn(vJ, i = 192. (A 13) 

of no-flux across the drop surfaces can be readily written as 

The velocity continuity through the interfaces implies 

The expression for the component eE1, of the rate-of-strain tensor at 7 = qi greatly 
simplifies if calculated via the relative velocity U* = U -  < past the sphere, where U 
is the fluid velocity. Indeed, using the no-flux boundary condition U: = 0, one can 
derive 

with h = (coshq-p)/c being the metric coefficient. The stream function 

for the relative motion is represented by (A 4), with $,(y) being replaced by 
$,(q)- KR,(7). Thus, using (A 12), (A 13) and (A 15), the conditions of tangential 
stress continuity through the interfaces can be written as 

$* = $+&p2 

d2 d2 
7 [Pn(r)- K Rn(7)I = F 7  [Pi(r>- K Rn(7)I 
d7 d7 

for 7 = ~ i ,  i = 132. (A 16) 

Relations (A 12)-(A 14) and (A 16) together with (A 5)  and (A 10) form the required 
linear system of eight equations for eight unknowns: A,, B,, C,, D,, En, F,, G,, and 
H,. It follows from the work of Stimson & Jeffrey (1926) that the hydrodynamic forces 
(I&, (&)z acting on the drops take the form 

m 
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It is not necessary to derive cumbersome analytical expressions for En, F,, Gn, and 
H,, since the series (A 17) must be summed numerically. However, a simple and useful 
step is to analytically exclude the coefficients A,, B,, C,, and D, from the solution. It 
follows from the exponential forms (A 5 )  and (A 7) for FA(r) and R,(v), respectively, 
and from the boundary conditions (A 13) that 

d2 d 
T[Fi(?i.)- V,Rn(7)I = T (2n+ 1)-[$$(7)- q%(7)] for 7 = 7,, (A 18) 
d7 d7 

where the upper sign stands for i = 1, the lower one for i = 2. Hence, using (A 14), 
conditions (A 16) can be replaced by 

where the upper sign holds for i = 1, the lower one for i = 2. Relations (A 12) and 
(A 19) together with (A 10) constitute the desired system of four equations for four 
unknowns which is solved numerically for arbitrary n to compute the forces (A 17). 
Note that the boundary conditions (A 19) directly enable the solid-sphere limit ,12 + 00. 

Owing to linearity of the problem, the hydrodynamic forces can be decomposed as 

The dimensionless resistance coefficients A ,  represent the forces acting on the drops 
moving in a quiescent liquid and have been studied and used previously (see Zinchenko 
1982 and the references therein). The dimensionless coefficients D, and D, are new and 
represent the forces acting on the drops at rest in the extensional flow (A 3). 

The relative mobility B along the line-of-centres may be expressed in terms of the 
resistance coefficients A,, : 

According to (3), the relative velocity 5- V, along the line-of-centres of two freely 
suspended drops in the extensional flow (A 3) takes the form 2Er(l - A ) .  On the other 
hand, this relative velocity can be expressed from (A 20) by equating (f& and (QZ to 
zero, yielding 

The proposed form of the numerical solution enables highly accurate calculation of 
A,,, D,, D,, 3, and 1 -d, up to extremely small separations. However, for sufficiently 
small gaps, the convergene of the series (A 17) is slow, with ultimate divergence when 
the spheres touch. A significant improvement in the efficiency of coalescence rate 
calculations is achieved by using near-field asymptotics for 9 and 1 -d. For the 
singular coefficient A,,, the three-term asymptotics of Zinchenko (1982) holds : 
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The parameter C, depends on h and ,k, and has an explicit but cumbersome analytical 
expression (Zinchenko 1982). The coefficients A12, AZ2,  D,, and D, in (A 20) have no 
singularity when the gap tends to zero, and so for small separations these coefficients 
can be replaced by their limiting values (marked by an asterisk) for two touching 
spheres. Explicit integral representations are available for ATz and Acz using the 
tangent-sphere coordinate solution for drops moving in contact along the line-of- 
centres (Reed & Morrison 1974). Similar tangent-sphere coordinate solution for two 
touching drops in the extensional flow (A 3) could be constructed to determine DT and 
0;. However, a much simpler way to estimate AT2, At2, DT, D,*, and C, with sufficient 
accuracy is exploited in the present work based on using the bispherical coordinate 
solution for several very small separations (with C, being estimated as the difference 
between the exact value of All and the sum of the first two terms on the right-hand side 
of (A 23)). These approximations along with the exact reciprocity relation, 

yield the desired near-field asymptotic forms for 9 and 1 -d. 
The asymptotic expression (A 23) is not uniformly valid when ,k+ co, i.e. for high 

viscosity ratio the range of separations where (A 23) is applicable becomes too small. 
So, for ,ii 9 1 and 4 < 1, a different asymptotic form was used: 

The functionflm) was calculated numerically by Davis et al. (1989) via the solution of 
the boundary integral equation in the lubrication approximation, and an accurate Pade 
approximant was found : 

1 + 0.402m 
= 1+1.711m+0.461m2' 

Unlike (A 23), the asymptotics (A 25) enables the solid-sphere limit m -+ 0. On the 
other hand, it can be shown that, when m -+ GO, the asymptotics (A 25) matches (A 23) 
both in the leading term and in the part of the logarithmic term proportional to ,ii2, 
provided thatAm) is calculated exactly. A reasonable way, for a given ,ii 9 1, to select 
between the two asymptotic forms (A 23) and (A 25) is to compare the exact values of 
59 and 1 - d with the near-field approximations based either on (A 23) or on (A 25) for 
a sequence of small separations and choose the form which yields the prescribed 
accuracy for a wider range of separations. 

Appendix B. Calculation of asymmetric mobility functions 
and 2 for asymmetric motion normal 

to the line-of-centres are based on the extension of Zinchenko's (1980) bispherical 
coordinate solution for two drops moving normal to the line-of-centres in a quiescent 
liquid to the case with an additional shear flow, 

Our calculations of the mobility functions 

far from the drops (here and henceforth the coordinate systems are the same as in 
Appendix A). The cumbersome solution of Zinchenko (1980), subsequently referred to 
as the work I, is not reproduced here to any extent. Instead, only the necessary 
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modifications to this solution are listed below. Consider two drops moving with 
velocities (V, ,O,O) and (V,,O,O) and submerged in the unperturbed flow (B 1). The 
cylindrical velocity components inside and outside the drops are sought in the form 
(O’Neill & Majumdar 1970) 

U p =  -+x+$ cos8, U,=(X-$)sinO, U,= -+2$ cos8, ( B 2 )  

with the bispherical-coordinate representation for the ‘potentials’ F, x, $, and 4 being 

tF 1 rcF 1 

I 00 

F = (cosh 7 -p)k sin c C fn(r) Pi&), 
n=l 

In order to satisfy the Stokes’ equation (V x V2u = 0), the functionsf,, vnr xn,  and $n 

inside drops 1 and 2 are proportional to exp [ f (n +f) 73, where to avoid singularities 
the upper sign holds for drop 1, and the lower one for drop 2. Outside the drops, the 
representation (B 2)-(B 3 )  with f,, qn, xn, and $n being linear combinations of 
exp [ f (n + f )  73 yields the fluid velocity vanishing at infinity, so the unperturbed flow 
( B  1) should be added. Note that (B 2) represents (B 1) with F = x = 4 = 0, and 
$ = yz. To obtain the representation (B 3) for y? = yz, we use the generating function 
for Legendre polynomials : 

m 

(coshr-~)-fr = 1/2 C ~ x P [ - ( ~ + + ) I ~ I I P ~ ~ ) ,  (B 4) 
n=o 

and differentiate (B 4) with respect to 7. Using (A l), we arrive at 

4) 

YZ = ( co~~T-P) ’  C PnC.1, 
n=o 

where 

The equations of continuity inside and outside the droplets and the boundary 
conditions can be written in a straightforward manner as a system of 16 difference 
equations, 12 being of second order, and the rest of fourth order, for 16 unknown 
sequences of coefficients determiningf,, qn, xn,  and y?, in all the three regions. This 
solution would be very inefficient for small separations. It is remarkable that, as in I, 
the problem can be reduced to only four difference equations, each of the fourth order. 
The first step is to proceed fromf,, xn,  and $, to new functions a,(r), /?,(r), and y n ( ~ )  
by the transformation 

$:(a> = y c d v n  + 1) exp [- (n + 3 lril sign 7. (B 6 )  
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for n 2 1. The expressions for a,, p,, and yn inside the drops can be taken in the form 
(1.6) of work I. Outside the drops 

with $.," being defined by (B 6). 
The results of I can then be readily used to write down the equations for I:, J i ,  

V. u = 0 inside and outside the drops, the velocity continuity through the interfaces, and 
the no-flux boundary conditions lead to six equations : (1 .8), (1. lo), and (1.12) of work I 
(with 8, replaced by 6). This process enables us to explicitly express I:, J i ,  Ki-,, L:-,, 
Me,,,, and N:+l via A;, B",, Zk,  and ZL, with n- 1 < rn < n + 1. Inverting (B 7) and 
using the velocity continuity through the interfaces in the form (1.9) of work I then 
allows us to express all the functionsf,, q~,, x,, and $, inside and outside the drops 
in terms of the four basic sequences A;, BL, Zk, and ZL with n- 2 < rn < n + 2 (that 
is the essence of the transformation (B 7)). The tangential stress continuity conditioins 
take the form (1.16), (1.19) of work I (with hi = I; and Si = K), eventually leading to 
a system of four difference equations, each of fourth order: 

Ke,, Le,, M",  Ne,, A", Be,, z:, = q:,(71)-V-%(71) and zz, = vX7z)-qe,(72>. Namely, 

2 

C T: W,,, = V,S;+ KS;+yU,  for IZ 2 1, (B 9) 
k=-2 

with T:=O for n + k <  1, 

and the boundary condition 
W,+O as n+co. 

The unknown vector W, consists of the components 

Ae, exp [ - (n + $1 721, Be, exp [(n + 3 711, z :,? z z,. (B 11) 

The 4 x 4 matrices 1: and the four-component vectors S i  and S i  are the same as in 
work I, whereas the four-component vector U, arises from the ambient shear flow acting 
on two drops at rest. 

The hydrodynamic forces act only in the x-direction and are presented by the infinite 
series (2.2) of I (without the factors V) ,  the nth terms of the series being expressed via 
WnP1, W,, Wnfl, V,, V,, and y using (1.19) of work I. These forces can be decomposed 
into the parts due to the drop motion in a quiescent liquid and to the case of drops at 
rest in the shear flow (B 1). Each part is computed as a limit of a recurrent sequence 
as n + co using (B 9), in the same manner as in I. In particular, inverting the resistance 
matrix for the motion in a quiescent liquid yields the relative mobility coefficient X .  
Besides, equating the net hydrodynamic forces to zero, we obtain the relative velocity 
V,- V, via the shear rate y, which, according to (3), should be equivalent to 
4- V, = yr(1 -:a), thus yielding the function a. 

The calculations in double precision on computers with different mantissa length 
demonstrate a high reserve of accuracy (usually four or more true decimal figures) in 
calculating and X for size ratios in the range 0.1 < h < 10 and viscosity ratios in the 
range ,i2 < 100, for separations in the range 2 2 x lop4. However, for very small 
separations, the direct computation of 99 and X has slow convergence. According to 
the numerical results, for fluid spheres the functions &?(a and X(a approach their 
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limiting values for touching with an error O(g, and so a linear extrapolation can be 
used for ‘moderate’ values of ,& to considerably increase the efficiency of collision rate 
calculations, as in Zhang & Davis (1991). The idea of linear extrapolation fails at high 
viscosity ratio, since for solid spheres &?(g and X(8 approach &?(O), X(0) with an 
error O(llnlJ-l) (see Batchelor & Green 1972 and Batchelor 1976). However, for high 
viscosity ratios, the strongly singular van der Waals forces should be usually taken into 
account, which makes the collision rate calculations only weakly sensitive to the 
accuracy of hydrodynamic functions at small separations. 
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